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Abstract. This report introduce the Alternated Direction Multiplier
Method[1], an effcient parallel opitmization framework. This framework
has been widely applied to large scale statistical learning, achieves robust
good enough results for many learning models. For this report, I orga-
nize this topic as three parts, 1. The motivation of ADMM; 2. The main
structure of ADMM, Dual Decomposition and Augmented Lagrangian 3.
Application to distributed statistical learning, mostly L1 norm related.
To Follow this procedure, I still utilized two ADMM implementations, to
illustrate its fast speed and good enough residual on large multidimen-
sional dataset with 700MB regression and classfication data.
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1 The Motivation

The large data analysis has long history, from 1960s approximately,
where the model is to solve large scale of linear programming, like
danzig wolfe decomposition. Nowadays, the mordern methods of sta-
tistical learning are more diversified, like figure 1. Normally, for most
statistical learning method, we could formulate the objective as:

min
x

loss(x) + regu(x)

where the objective is composed of loss function and regularization
norm. The loss function measures how well the model fitting on
trainning data, the regularization term measures the complexity of
the model. The loss function is mostly convex and continuous, while
regularization is convex, non-differentiable when use L1 norm.
If the data is very large, with many instances and many features,
it’s very hard to solve it efficiently through traditional optimiza-
tion methods. The most straigt way is to divide the data to smaller
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blocks, and distribute them to processing agents. There are two ways
to divide the data, 1. Divide data according to instances; 2. Divide
the data according to features. The figure 2

However, this decomposition style is normally embedded to pri-
mal dual algorithm. Since the distributed gradients caculated in each
agents is calcualated independently, we need to collect these gradi-
ents together, to update the dual variable, called Gather Process.
So the Convergence, the most important criterion in optimization
algorithms, could be guranteed to a fast style.

Fig. 1: A roughly sketch of statistical models

2 Decomposition and Convergence

In this section, I introduce two components of ADMM, dual de-
composition and Augemented Lagrangian Multiplier. The Dual de-
composition guarantees parallel optimization, and Augmented La-
grangian Multiplier guarantees fast convergence in primal updates.
ADMM is a nice combinations of these two methods.
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Fig. 2: The Data Orgnization
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2.1 Dual Decomposition

Before we introduce Dual Decomposition, we first look at the Dual
Ascent, the original formulation of Dual Decomposition. Consider
the equality constrained problem

minimize f(x) (1)

subject to Ax = b (2)

The Lagrangian of problem is

L(x, y) = f(x) + yT (Ax− b)

and the dual function is

g(y) = inf
x
L(x, y) = −f ∗(−ATy)− bTy

The Dual Ascent is to Maximize g(y) through primal and dual
upate

xk+1 := argmin
x
L(x, yk) (3)

yk+1 := yk + αk(Axk+1 − b) (4)

The Dual Decomposition is to assume the objective f(x) could be
decomposed as

f(x) =
N∑
i=1

fi(xi)

Here the f is decomposed as bounded functionals fi, data x is de-
composed to subvectors xi ∈ Rni , while the lagrangian could also
be decomposed as

L(x, y) =
N∑
i=1

Li(xi, y) =
N∑
i=1

(fi(xi) + yTAixi − (1/N)yT b)

The new parallel update in primal x update and the dual update
to gather subgradients is like:

xk+1
i := argmin

xi
Li(xi, y

k) (5)

yk+1 := yk + αk(Axk+1 − b) (6)
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Here the dual decomposition could divide original model to sev-
eral sub-models, then the parallel optimization on different models
could be parallelized. The Dual update is a collection operation,
which collect all the subgradients in primal update. The procedure
is illustrated at figure 3. At this stage, we are quite sure that the
broad and gather process is a stable procedure which could always
improve the model at each iteration. But, it needs strong assump-
tions on the objectives, also, the variables of each model imposed on
have to be decoupled, to remove the interactions of each model.

Fig. 3: The BroadCast and Gather of Dual Decomposition

2.2 Augmented Lagrangian Multiplier

Although the dual step in dual decomposition is trying to collect the
subgradients, it is still not fast enough in Primal X update, since
the original lagrangian is not fast enough to make each subgradient
converge fast. So here the augmented lagrangian, which scaled the
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penalty of contraints to second order, shows its power.
The augmented lagrangian is formulated as

Lρ(x, y) = f(x) + yT (Ax− b) + (ρ/2)‖Ax− b‖22

The penalty parameter ρ is a key prameter which is set as the step
size of dual variable update. This method makes the opitmization
converges under more general conditions that f is not strictly convex.

The disadvantage of augmented lagrangian multiplier is that it
introduces L2 norm, which makes the decomposition not available,
since there would be interactions between different sub-functions.

2.3 Alterhnating Direction Method of Multipliers

The ADMM combines the dual decomposition and augmented la-
grangian, formulate the original objective as two blocks of variables.
The formulation is like:

minimize f(x) + g(z)

subject to Ax+Bz = c

Where the X and Z are two blocks of variables. The iterations are
formulated as

xk+1 := argmin
x
Lρ(x, z

k, yk) (7)

zk+1 := argmin
z
Lρ(x

k+1, z, yk) (8)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c) (9)

The Scaled form of ADMM is more elegant, utilize scaled dual vari-
albe µ = (1/ρ)y,

xk+1 := argmin
x

(f(x) + (ρ/2)‖Ax+Bzk − c+ µk‖22) (10)

zk+1 := argmin
z

(g(z) + (ρ/2)‖Axk+1 +Bz − c+ µk‖22) (11)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c) (12)

The whole procedure of ADMM is shown in figure 4, the Z update
is a block to average the collections of primal x updates, the dual
ascent is the final step to guarantee to consistent covergence.
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Fig. 4: The ADMM procedure

2.4 Why divide to two blocks? Not 3,4.....

The two blocks variable formulation in this work is proved to con-
verge under two general assumptions,

– The function f is closed, proper, convex, so primal upate of x, z
is solvable,

– the lagrangian L0 has a saddle point, so dual and primal is equal

Since all is approximation in computational methods, the objec-
tive here is to get a robust and good enough result. The ADMM
has been shown that if it’s extended to three blocks, it would give a
counter example[2] that this iteartion style is not working.

2.5 Why Dual?

– The dual update is very straight forward, since it is always a
concave problem, no matter whehter the original primal is convex.

– The dual is an easier problem in most cases, if the constraints
are linear and limited, then less dimension is requried

– The Dual is an lower bound of the primal solutions, there maybe
gap between dual optimal and primal optimal, but it may be
ignored in discontinous or discrete situation
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3 Distributed Statistic learning

Turn back to the dual block representation or Dual Functional Rep-
resentation,

minimize l(Ax− b) + r(z)

Here the x is one block, z is another block, we can divide the x block
only, or divide both blocks in consistent manner. These two methods
corresponding to divide the data instances or divide data features,
like figure 5 show

Fig. 5: Two ways of divide data

3.1 Divide across instances

The Splitting of instances is very straight forward, and the most
critical part is that second iteration is to collect and average the
subgradients from first iteration. The formulation of this case could
be

minimize

N∑
i=1

li(Axi − bi) + r(z) (13)

subject to xi − z = 0, i = 1 · · ·N (14)
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Iterations would be like:

xk+1
i := argmin

xi
(li(Aixi − bi) + (ρ/2)‖xi − zk + µki ‖22) (15)

zk+1 := argmin
z

(r(z) + (Nρ/2)‖z − x̄k+1 − µ̄k‖22 (16)

µk+1
i := µki + xk+1

i − zk+1 (17)

3.2 Divide across features

The splitting across features requires to seperate the loss term and
regularization term both, in contrast to splitting across instances
that only requires seprate the loss term. Here the Z update is still
formulated as a average over the parallel computation of x update.

minimize
N∑
i=1

li(Axi − bi) +
N∑
i=1

r(zi) (18)

subject to xi − zi = 0, i = 1 · · ·N (19)

Iterations would be like:

xk+1
i := argmin

xi
(ri(xi) + (ρ/2)‖Aixi − Aixki − z̄k + Ax

k
µk‖22) (20)

z̄k+1 := argmin
z

(l(Nz̄ − b) + (Nρ/2)‖z − Axk+1 − µk‖22 (21)

µk+1 := µk + Ax
k+1 − z̄k+1 (22)

Here I notice that the Z update step is always defined as an
average step, to average to x updates in the first step, while the dual
varialbe µ is set a single varialbe update through mean function.

4 Decomposition on Functionals, Distributed
learning on Data

Now we know that ADMM is a very straight forward way to divide
the model to 2 blocks of functions. And the distributed learning of
last section is not about dividing the model like decomposition, it is
designed to divide the data. So Here I give a Comparison table of
Dual Decomposition and Distributed learning as table 1. The dis-
tributed learning is like a parellel scheme embedded into the primal
dual updates.



10 Rui Wang

Dual Decomposition Distributed Learning
Objective Decompose functions Decompose Data

Potential Coupling Yes No
Dual form necessary not necessary

Table 1: The Comparison of Decomposition and Distributed Learn-
ing

5 Experiment

Here I utilized 3 datasets to test the ADMM model, phoneme data,
Million Song data(UCI), Slice Data(UCI). The Table 2 descript the
attributes of each dataset. I utilized the POGS opensourced ADMM
R implementation from stanford, to do test of this optimization.
Three models are built on this package, lasso, logistic, svm, to solve
each dataset, like table 3

dataset Instances attributes task
phoneme 4509 256 classification

slice 53500 386 regression
millison song 515345 90 regression

Table 2: The datasets details

dataset models
phoneme logistic, svm

slice Lasso
millison song Lasso
Table 3: The Models built

Since the R package of POGS doesn’t provide predict function,
and the main purpose here is to test this parallel optimization’s
performance on reducing the residuals, so here I would give three
plots of primal residuals and dual residuals through iterations. All
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the details are provided in the appendix, with the SMSE of other
implementations like glmnet and e1071. At the computational per-
spective, the datasets haven’t been splitted to train, validation, test.
We utilize all the data instances and attributes, let the method to
run on the data, to test the final residuals, it is shown in table 4.
The error metric of primal residual is defined by the author, shown
in appendix.

dataset model primal residual MSE
phoneme data logistic 9.58e-04 0.09013
phoneme data svm 0 0

song data lasso 2.71e-03 96.37442
slice data lasso 9.95e-04 126.978

Table 4: The Models Performance

6 Conclusion

This report introduce the ADMM framework, with its applications
to extend the statistical learning algorithms to large scale data anal-
ysis. The experiments shows that the convergence of ADMM is good,
and the final result is also good enough. The importance of ADMM is
to summarize the elegant optimization methods into a new straight-
forward way, and what’s more important is that it illustrates the
difficulty at large statistical learning. If we just try to utilize more
computers to handle the explosive data, it’s far away from get prob-
lems done.

This report is trying to provide an explicity overview of this
framework, here I also want to point out, ADMM is not good enough
to handle some other problems like large linear control system, also,
the two-block alternate direction update seems not possible to extend
to 3 or 4 blocks[2]. Some researchers are trying to apply statistical
methods to make progress in large scale optimization, I think it may
be the only way to do it.
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Appendix

Fig. 6: The Primal and Dual residuals on phoneme
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Fig. 7: The Primal and Dual residuals on million song
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Fig. 8: The Primal and Dual residuals on slice data
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Fig. 9: The Primal and Dual residuals on phoneme
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Fig. 10: The Primal and Dual residuals on million song
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Fig. 11: The Primal and Dual residuals on slice data


